2,550 research outputs found

    LIF measurement of the diluting effect of surface waves on turbulent buoyant plumes.

    Get PDF
    In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quantification of enhanced mixing due to surface waves as well as measurement of other plume parameters

    Virtual Pitch and Pitch Shifts in Church Bells

    Get PDF
    It is well established that musical sounds comprising multiple partials with frequencies approximately in the ratio of small integers give rise to a strong sensation of pitch even if the lowest or fundamental partial is missing—the so-called virtual pitch effect. Experiments on thirty test subjects demonstrate that this virtual pitch is shifted significantly by changes in the spacing of the constituent partials. The experiments measured pitch by comparison of sounds of similar timbre and were automated so that they could be performed remotely across the Internet. Analysis of the test sounds used shows that the pitch shifts are not predicted by Terhardt’s classic model of virtual pitch. The test sounds used were modelled on the sounds of church bells, but a further experiment on seventeen test subjects showed that changes in partial amplitude only had a minor effect on the pitch shifts observed, and that a pitch shift was still observed when two of the lowest frequency partials were removed, so that the effects reported are of general interest

    Partial frequencies and Chladni’s law in church bells

    No full text
    The rim partials of a church bell (those with an antinode at the soundbow) generate the strike pitch or perceived note of the bell. The spacing in frequency of the higher rim partials has an important effect on the tonal quality of the bell. Investigations into the partial frequencies of 2752 bells, both bronze and steel, of a wide variety of dates, founders and sizes, show a simple and unexpected relationship between the frequencies of the rim partials. This relationship explains why attempts to tune the higher rim partials independently have failed. A modified version of Chladni’s law provides insight into the musical relationship of the partials, and predicts the partials of individual bells well, but fails to give a simple model of the spacing between the partials seen in bells with different profiles

    Spectral pitch distance and microtonal melodies

    Get PDF
    We present an experiment designed to test the effectiveness of spectral pitch distance at modeling the degree of “affinity” or “fit” of pairs of successively played tones or chords (spectral pitch distance is the cosine distance between salience-weighted, Gaussian-smoothed, pitch domain embeddings of spectral pitches—typically the first eight to ten partials of a tone). The results of a previously conducted experiment, which collected ratings of the perceived similarity and fit of root-position major and minor triads, suggest the model works well for pairs of triads in standard 12-tone equal temperament tunings. The new experiment has been designed to test the effectiveness of spectral pitch distance at modeling the affinity of tones in microtonal melodies where the partials of the tones can be variably tempered between being perfectly harmonic and perfectly matched to the underlying microtonal tuning. The use of microtonal tunings helps to disambiguate innate perceptual (psychoacoustical) responses from learned (cultural) responses. Participants are presented with a software synthesizer containing two unlabeled controls: one adjusts the precise tuning of the tones; the other adjusts the extent to which the spectrum is tempered to match the tuning (as set by the first control). A selection of microtonal melodies are played in different tunings, and the participants adjust one, or both, controls until they find a “sweet spot” at which the music sounds most “in-tune” and the notes best “fit” together. The results of these experiments will be presented and discussed

    Hex Player—a virtual musical controller

    Get PDF
    In this paper, we describe a playable musical interface for tablets and multi-touch tables. The interface is a generalized keyboard, inspired by the Thummer, and consists of an array of virtual buttons. On a generalized keyboard, any given interval always has the same shape (and therefore fingering); furthermore, the fingering is consistent over a broad range of tunings. Compared to a physical generalized keyboard, a virtual version has some advantages—notably, that the spatial location of the buttons can be transformed by shears and rotations, and their colouring can be changed to reflect their musical function in different scales. We exploit these flexibilities to facilitate the playing not just of conventional Western scales but also a wide variety of microtonal generalized diatonic scales known as moment of symmetry, or well-formed, scales. A user can choose such a scale, and the buttons are automatically arranged so their spatial height corresponds to their pitch, and buttons an octave apart are always vertically above each other. Furthermore, the most numerous scale steps run along rows, while buttons within the scale are light-coloured, and those outside are dark or removed. These features can aid beginners; for example, the chosen scale might be the diatonic, in which case the piano’s familiar white and black colouring of the seven diatonic and five chromatic notes is used, but only one scale fingering need ever be learned (unlike a piano where every key needs a different fingering). Alternatively, it can assist advanced composers and musicians seeking to explore the universe of unfamiliar microtonal scales

    Alvin titanium electrical penetrator design, manufacture, and testing : interim report

    Get PDF
    Under the U.S. Navy's Project TITANES a new titanium alloy pressure hull has been designed, built, and installed for use in the deep-submersible ALVIN. The Woods Hole Oceanographic Institution was assigned the task of designing, procuring and testing the through-hull electrical penetrators for the new sphere. This interim report traces the progress of this Woods Hole program from the initial design stage, through the various phases of manufacture and electrical testing, to the installation of the units in the completed hull, and the numerous laboratory~ pressure tank, and at-sea tests conducted to verify the satisfactory performance of the new penetrators. The results of all laboratory and in-service testing done to date support the conclusion that the performance of the titanium penetrators meets all of the original specifications.Office of Naval Research Contract No. NOr014-73-C-0097 NR 265-10

    Kinesin-13s form rings around microtubules

    Get PDF
    Kinesin is a superfamily of motor proteins that uses the energy of adenosine triphosphate hydrolysis to move and generate force along microtubules. A notable exception to this general description is found in the kinesin-13 family that actively depolymerizes microtubules rather than actively moving along them. This depolymerization activity is important in mitosis during chromosome segregation. It is still not fully clear by which mechanism kinesin-13s depolymerize microtubules. To address this issue, we used electron microscopy to investigate the interaction of kinesin-13s with microtubules. Surprisingly, we found that proteins of the kinesin-13 family form rings and spirals around microtubules. This is the first report of this type of oligomeric structure for any kinesin protein. These rings may allow kinesin-13s to stay at the ends of microtubules during depolymerization

    A MIDI sequencer that widens access to the compositional possibilities of novel tunings

    Get PDF
    We present a new Dynamic Tonality MIDI sequencer, Hex, that aims to make sequencing music in and across a large variety of novel tunings as straightforward as sequencing in twelve-tone equal temperament. It replaces the piano roll used in conventional MIDI sequencers with a two-dimensional lattice roll in order to enable the intuitive visualization and dynamic manipulation of tuning. In conventional piano roll sequencers, a piano keyboard is displayed on the left side of the window, and white and black note lanes extend horizontally to the right, into which a user can draw a sequence of notes. Similarly, in Hex, a button lattice is displayed in its own pane on the left side of the window, and horizontal lines are drawn from the center of each note to the right. These lines function as generalized note lanes, just like in piano roll sequencers, but with the added benefit that each note lane's height is always proportional to its pitch, even if the user changes the tuning. The presence of the button lattice on the left side of the window illustrates exactly which buttons a performer would play in order to replicate the sequence when playing a physical button lattice instrument
    • …
    corecore